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Spin waves and Dirac magnons in a honeycomb-lattice zigzag antiferromagnet BaNi2(AsO4)2
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The topological properties of massive and massless fermionic quasiparticles have been intensively inves-
tigated over the past decade in topological materials without magnetism. Recently, the bosonic analogs of
such quasiparticles arising from spin waves have been reported in a two-dimensional (2D) honeycomb-lattice
ferromagnet/antiferromagnet and a 3D antiferromagnet. Here, we use time-of-flight inelastic neutron scattering
to study spin waves of the S = 1 honeycomb-lattice antiferromagnet BaNi2(AsO4)2, which has a zigzag
antiferromagnetic (AFM) ground state identical to that of the Kitaev quantum spin liquid candidate α-RuCl3.
We determine the magnetic exchange interactions in the zigzag AFM ordered phase, and show that spin waves in
BaNi2(AsO4)2 have symmetry-protected Dirac points inside the Brillouin zone boundary. These results provide
a microscopic understanding of the zigzag AFM order and associated Dirac magnons in honeycomb-lattice
magnets, and are also important for establishing the magnetic interactions in Kitaev quantum spin liquid
candidates.

DOI: 10.1103/PhysRevB.104.214432

I. INTRODUCTION

Elucidating nontrivial crossing points in the band struc-
ture of a crystalline solid plays an important role in
understanding its momentum space topology [1–3]. The dis-
covery of massless Dirac fermions in the electron bands of
graphene has led to intensive studies of topological phases
in metallic systems [4,5]. A plethora of topologically non-
trivial electron band structures with massless and massive
fermionic quasiparticles have been proposed and studied in
electronic systems [6,7]. However, band topology is not re-
stricted to fermionic systems and can also be extended to
bosonic quasiparticles [8–22]. In magnetic ordered materials
where spin waves are bosons, topological bosonic quasi-
particles (magnons) are characterized by chiral edge states
and a spin gap at the Dirac points induced by the next-
nearest-neighbor Dzyaloshinskii-Moriya (DM) interaction, as
found in the two-dimensional (2D) honeycomb ferromagnet
CrI3/CrBr3/CrGeTe3 [14–17], or symmetry-protected band
crossings, such as the magnon Dirac cones in the 3D anti-
ferromagnet Cu3TeO6 [18,19] and the 2D honeycomb-lattice
antiferromagnet CoTiO3 [20]. Recently, the topological prop-
erties of magnon bands in collinear magnetic orders have been
investigated on the honeycomb lattice. While the ferromag-
netic (FM) phase exhibits a magnon spectrum similar to the
electron dispersion of graphene, the antiferromagnetic (AFM)
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phases show an even richer magnon structure. In particular,
the zigzag AFM ordered phase, shown in Figs. 1(a) and 1(b),
can host a Dirac nodal line protected by nonsymmorphic
symmetry combined with time-reversal symmetry [21,22].

In addition to potentially hosting topological magnon
bands, 2D honeycomb-lattice magnetic materials themselves
are of great interest because the Kitaev spin model [23], con-
sisting of a network of spins with S = 1/2 on a honeycomb
lattice, is predicted to host a quantum spin liquid (QSL) with
Majorana fermions as its excitations, important for quantum
computation [24]. Although there is no confirmed Kitaev QSL
material, α-RuCl3 has been identified as a candidate with a
zigzag AFM ground state [Fig. 1(b)] [25]. One unsolved quest
is to determine magnetic exchange couplings giving rise to
the zigzag AFM order, which is necessary to extract Kitaev
interactions in α-RuCl3 [26]. Actually, this quest has not
been completely solved in all 2D honeycomb-lattice magnets
with a zigzag AFM ground state, despite many compounds
having been studied [27–33]. Inelastic neutron scattering
(INS) experiments carried out on powder samples of some
of these compounds provided constraints on the magnetic ex-
change couplings [31,34,35]. Nevertheless, no measurements
on single crystals have conclusively unveiled the magnetic
couplings giving rise to the zigzag AFM structure.

BaNi2(AsO4)2 is a rare example of a 2D honeycomb-lattice
magnet with S = 1 and a zigzag AFM structure [Figs. 1(a)
and 1(b)] [36], in which magnetic exchange couplings could
be completely determined. Unfortunately, early INS experi-
ments carried out on single crystals of BaNi2(AsO4)2 and
related compounds [37–40] have not mapped out the entire
spin wave spectra, due to limitation of the spectrometers used
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FIG. 1. (a) Crystal structure of BaNi2(AsO4)2. (b) Top-down
view of the nickel honeycomb lattice with Heisenberg exchange
paths. (c) The Brillouin zone boundaries and high-symmetry points
in the [H, K] plane. (d) Susceptibility of BaNi2(AsO4)2 measured
with a 1 T magnetic field applied parallel to the c axis and ab
plane. The sharp turn in susceptibility data indicates a magnetic
phase transition at TN = 18 K. (e) Order-parameter-like (1/2, 0, 1/2)
magnetic Bragg peak. Inset: Photograph of the single crystal used in
the susceptibility measurement.

nearly four decades ago. In addition, the isostructural com-
pound BaCo2(AsO4)2, which has a helical magnetic ground
state at zero field [41], has been recently proposed as a candi-
date for a field-induced Kitaev QSL state [42]. Therefore, it is
of great interest to map out spin waves in BaNi2(AsO4)2 and
determine the magnetic exchange couplings and topological
properties.

In this paper, we report INS studies of spin waves on single
crystals of BaNi2(AsO4)2. Using neutron time-of-flight spec-
troscopy, we map out spin waves in the AFM ordered state and
fit the data with a Heisenberg Hamiltonian to determine the
magnetic exchange couplings. The spectra reveal signatures
of Dirac points around the high-symmetry point X in the 2D
Brillouin zone. Our symmetry analysis and calculation based
on linear spin wave theory show that the Dirac point is due
to the coexistence of easy-axis and easy-plane anisotropy, and
is protected by symmetry. On warming to temperatures above
TN , spin waves in the ordered state become broader but still
have short-range in-plane spin correlations that decay with
increasing temperature. Our results therefore determine the
magnetic exchange couplings of a zigzag AF honeycomb-

lattice magnet, and provide a basis to compare with theoretical
calculations using a Heisenberg-Kitaev Hamiltonian.

II. EXPERIMENT

BaNi2(AsO4)2 crystallizes in a tetragonal structure with
the in-plane and c-axis lattice parameters a = 4.94 Å and
c = 23.43 Å, respectively (space group R3̄) [Fig. 1(a)]. Oc-
tahedrally coordinated Ni2+ ions form a 2D honeycomb
network, separated by AsO4-Ba-AsO4 layers [Fig. 1(b)]. The
compound has an ABC stacking along the c axis. The dis-
tance between nearest-neighbor Ni2+ ions is 2.85 Å, while
the interlayer distance is 7.89 Å, making an ideal 2D mag-
netic honeycomb lattice. Upon cooling, the system orders
antiferromagnetically below TN ≈ 18 K with Ni2+ spins
forming zigzag chains parallel or antiparallel to the a axis
[Fig. 1(b)] [36]. Figure 1(c) shows a schematic of the re-
ciprocal space in which the momentum transfer Q = Ha∗ +
Kb∗ + Lc∗ is denoted as (H, K, L) reciprocal lattice units
(r.l.u.). The zigzag AFM transition at TN ≈ 18 K is confirmed
by magnetic susceptibility [Fig. 1(d)] and neutron diffraction
measurements [Fig. 1(e)].

The polycrystalline sample was synthesized using a solid
state method. Stoichiometric powders of BaO (99.9%, Alfa
Aesar), NiO (99.9%, Alfa Aesar), and As2O5 (99.9%, Alfa
Aesar) were mixed, pressed, and sintered at 850 ◦C in
an evacuated quartz tube. Plate-shaped single crystals of
BaNi2(AsO4)2 was grown by using NaCl as the flux with a
molar ratio of 1:50. Green transparent crystals [Fig. 1(e) inset]
with a typical size of 1×1×0.2 mm and clear hexagonal edges
were separated from the flux by dissolving in hot water.

We coaligned more than 100 pieces of single crystals with a
total mass of ∼1.5 g in the [H, K, 0] scattering plane and car-
ried out time-of-flight inelastic neutron scattering experiments
using the ARCS Spectrometer, Spallation Neutron Source,
Oak Ridge National Laboratory. We used an incident neutron
energy of Ei = 16 meV with a high-resolution mode to do
rotational scans at 6, 17, 20, 37, and 80 K.

III. RESULTS AND DISCUSSION

The left panels in Figs. 2(a)–2(d) show measured Q-E
spectra of spin waves along high-symmetry directions within
the [H, K] plane at T = 6 K. The left panels in Figs. 2(e)–2(h)
are the Q dependences of spin waves in the [H, K] plane
at energies E = 2 ± 0.5, 3 ± 0.5, 4 ± 0.5, and 6 ± 0.5 meV,
respectively. The measured intensities below the line plots
(white lines) between the K and � points in Figs. 2(a) and 2(d)
are due to the finite integration range perpendicular to the
cutting direction (−0.1 � K⊥ � 0.1). The spin wave spectra
consist of four branches, consistent with the zigzag AFM
structure that has four Ni2+ ions in the magnetic unit cell
within the 2D plane. For magnetic ordered systems, the or-
dered moment direction is typically determined by dipolar
interactions or single-ion anisotropy associated with spin-
orbit coupling (SOC), where both can induce a spin gap at the
ordering wave vector [43]. The size of the spin gap indicates
the finite energy cost for the spins to fluctuate away from the
ordered direction. The presence of the spin gaps at the M
points [Figs. 2(a)–2(c)], especially the double-gap modes in
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FIG. 2. (a)–(d) Neutron scattering E -Q spectra along high-symmetry directions experimentally at 6 K (left), compared with the calculated
intensities and dispersion (twinned) discussed in the text (right). The line plots of a selected domain (not twinned) were overplotted on the
measured and calculated dispersion. The experimental data were integrated over −4 � L � 4 and −0.1 � K⊥ � 0.1. (e)–(h) Constant-energy
cuts at selected energy transfers in the [H, K] plane at 6 K compared with the calculated pattern. The experimental data were integrated over
−4 � L � 4.

Figs. 2(b) and 2(c), reveals that both easy-plane and easy-axis
anisotropies should be taken into account to understand the
spin waves of BaNi2(AsO4)2.

In order to determine the magnetic exchange couplings
in BaNi2(AsO4)2, we compared the measured spin waves
with the spectra calculated using the linear spin wave the-
ory via the SPINW program [44]. We assumed a general
Hamiltonian

H =
∑

i< j

(J1Si · S j + J2Si · S j + J3Si · S j )

+
∑

j

Dz
(
Sz

j

)2 +
∑

j

Dx
(
Sx

j

)2
, (1)

where J1, J2, and J3 are nearest-, next-nearest-, and next-next-
nearest-neighbor coupling constants [Fig. 1(b)], and the Dz

and Dx terms in the equation describe the easy-plane and
easy-axis anisotropies of the Ni2+ ions, respectively. The over-
all Hamiltonian is similar to the ones used to describe the
similar compounds BaNi2(PO4)2 and BaNi2(VO4)2, where
single-ion anisotropies are introduced [36,38]. We do not
consider in-plane anisotropic interactions (Kitaev term) due
to the small SOC for Ni2+ ions in an octahedral local config-
uration [24,45]. Interlayer magnetic exchange couplings were
also not included because there was no evidence of spin wave
modulation along the L direction, suggesting negligible c-axis
magnetic exchange coupling.

Since BaNi2(AsO4)2 has zigzag AFM order, spin waves
stem from the M point where there is a strong magnetic
Bragg peak [Figs. 2(b) and 2(c)]. To fit the spin wave spectra,
we set the signs of the initial magnetic exchange interac-
tions to be consistent with the zigzag magnetic order. Then
the exchange parameters were varied manually to compare
the simulated spectra with the experimental data. The best
fit yields J1 = −0.69, J2 = −0.03, J3 = 1.51, Dz = 0.15,
and Dx = −0.12 meV [the right panels in Figs. 2(a)–2(h)].
These results are compatible with the susceptibility mea-
surement [Fig. 1(d)] through the relation �CW = −S(S +
1)(g − 1)2�i=n,nn,nnnziJi/3kB, where S = 1 is the spin value,
kB is the Boltzmann constant, g is the Landé factor, and zi

is the number of neighbors coupled to each magnetic ion
by the magnetic exchange Ji [34,46]. We note that the ex-
change couplings extracted from our measured spin waves
are different from previous reports [36]. In spin wave disper-
sion along the [H, H, 0], [H, 0, 0], [H − 0.5, H + 0.5, 0], and
[H − 1/6, 1/3, 0] directions [Figs. 2(a)–2(d)], and constant-
energy cuts with different energies [Figs. 2(e)–2(h)], the
calculations describe the measured data quite well. In partic-
ular, the anisotropy terms Dz and Dx reproduced the observed
double-gap modes in the dispersion along the [H, 0, 0], and
[H − 0.5, H + 0.5, 0] directions [Figs. 2(b) and 2(c)].

The magnetic interaction of BaNi2(AsO4)2 can be de-
scribed by the Hamiltonian in Eq. (1). From the fitting above,
we got Dz > 0 and Dx < 0, describing the easy-plane and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. (a), (b) Line plots of spin wave dispersion along high-
symmetry directions with Dz = 0 (a) and 0.5 meV (b). The signs
of the My eigenvalues were labeled. (c), (d) Calculated line plot of
spin wave dispersion (not twinned) along the [H , H , 0] direction with
Dz = 0 (c) and 0.2 meV (d). (e), (f) Calculated line plot of spin wave
dispersion (not twinned) along the perpendicular direction across the
Dirac points in (c) and (d). (g), (h) Constant-energy cuts at selected
energy transfers in the [H, K] plane at 6 K. The experimental data
were integrated over −4 � L � 4.

easy-axis anisotropies of the Ni2+ ions, respectively. Here,
from symmetry arguments, we interpret the magnon disper-
sion of the above Hamiltonian, and establish the existence of
topological Dirac points and nodal lines.

With the zigzag AFM ordering, the system respects Mx,
My, C̄2y = t (a2)C2y, M̄z = t (a2)Mz, and T M̄y = T t (a1/2)My

[Fig. 1(b)]. Here, a1 = (1, 0) and a2 = (1/2,
√

3/2) are the
two lattice vectors (without the magnetic order). We will start
the discussion from a simplified Dz = 0 case, where the Sx =∑

i Sx
i is a conserved quantity. The magnon bands with Dz = 0

are presented in Fig. 3(a). Along the X -M line, every band is
fourfold degenerate, which splits into two doubly degenerate

bands on the �-X line. On the X -M line, (T M̄y)2 = −1,
indicating a Kramers degeneracy. On the other hand, T M̄y

commutes with Sx, indicating the Kramers pair is within the
same eigenspace of Sx. In addition, C̄2y anticommutes with Sx,
forcing different eigenspaces of Sx to be degenerate, leading
to the observed fourfold degeneracy. The doubly degeneracy
on the �-X line is protected by the anticommuting operators
MySx = −SxMy or M̄zSx = −SxM̄z, meaning the two magnons
in the doubly degenerate band belong to separate eigenspaces
of My or M̄z.

For finite Dz, Sx is no longer a good quantum number.
Therefore, the doubly degeneracy on the �-X line is lifted.
Especially, the crossings between the originally two degen-
erate bands [Fig. 3(b)] are protected by My or M̄z. These
crossings are actually nodal lines since M̄z is respected in
the whole Brillouin zone. Besides the crossings within the
originally degenerate bands, there is another crossing labelled
by yellow dot [Fig. 3(b)], which we will argue is inevitable for
small Dz. Especially, we will argue that the four degenerate
bands (with Dz = 0) at X are split into two degenerate states
with My eigenvalues {+1,+1} and {−1,−1} [Figs. 3(c)–3(f)].
To show this, we need to use the following three commuta-
tion relations that hold at X : MxMy = MyMx, MyC̄2y = C̄2yMy,
and MxC̄2y = −C̄2yMx. We now use proof by contradiction
and assume every doubly degenerate band at the X point
has states {ϕ+1, ϕ−1} with My eigenvalues {+1,−1}. Since
Mx commutes with My, Mxϕ+1 should also be an My eigen-
state with +1 eigenvalue. Therefore, Mxϕ+1 ∝ ϕ+1, which
means ϕ+1 is also an eigenstate of Mx with eigenvalue λ.
Furthermore, since Mx anticommutes with C̄2y, C̄2yϕ+1 should
be an eigenstate of Mx with eigenvalue −λ. As a result,
C̄2yϕ+1 ∝ ϕ−1. Finally, My commutes with C̄2y, indicating
C2yϕ+1 ∝ ϕ−1 is an eigenstate of My with eigenvalue +1. This
contradicts the original assumption that ϕ−1 is an eigenstate of
My with eigenvalue −1. Therefore, every doubly degenerate
band at X has My eigenvalues {+1,+1} or {−1,−1}. With
the knowledge of the My eigenvalues on the �-X line and
at the X points, it is evident that the crossing labelled by
yellow dot is unavoidable, which is a topological Dirac point
[Figs. 3(c)–3(f)].

To compare the above discussion with the data, we
show constant-energy cuts at [Fig. 3(g)] and slightly above
[Fig. 3(h)] the energy E = 5.2 meV where we expect Dirac
crossings. Although twinned domains and finite energy reso-
lution give rise to complicated features in the constant-energy
cuts, we can clearly see the maxima of intensity are around
the X points as marked in Figs. 3(g) and 3(h), which provides
direct evidence of the existence of the Dirac points in the
spectrum.

In strongly correlated electron materials such as the parent
compound of iron-based superconductors, in-plane spin-spin
correlations are weakly dependent on the AFM ordering tem-
peratures of the system [47]. To test if this is also the case
for zigzag ordered BaNi2(AsO4)2, we show in Fig. 4 the
temperature dependence of the constant-energy cuts at T =
TN − 1.5 = 17 K and T = TN + 18.5 = 37 K with energies
of E = 0, 2, 3, 4, 5, 6 meV. In the elastic channel, magnetic
ordered peaks at the M points below TN disappear at 37 K
[Fig. 4(a)]. However, with finite energy transfer [Figs. 4(b)–
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. (a)–(e) Temperature dependence of constant-energy cuts
at selected energy transfers in the [H, K] plane. The data were
integrated over −4 � L � 4. The elastic scattering in (a) and the
inelastic scattering at 37 K showed in the right panels of (d)–(f) were
multiplied by 0.1 and 2, respectively. We see clear spin correlations
at T = 37 ≈ 2TN K.

4(f)], although intensities dramatically drop upon warming,
the spin correlations persist up to 37 K.

By normalizing the observed magnetic scattering S(Q, E )
with a vanadium standard, we can estimate the imaginary
part of the dynamic susceptibility χ ′′(Q, E ) in absolute units
via χ ′′(Q, E ) = [1 − exp(−E/kBT )]S(Q, E ), where kB is the
Boltzmann constant. The data points in Fig. 5(a) show the
estimated energy dependence of the local dynamic suscepti-
bility χ ′′(E ) = ∫

χ ′′(Q, E )dQ/
∫

dQ, where the integration
is within the first Brillouin zone [48]. Calculations using a
Heisenberg Hamiltonian assuming S = 1 shown in the dashed
and solid lines are comparable to the observation, thus con-
firming that the S = 1 Heisenberg Hamiltonian can describe
the data. In correlated electron materials such as the parent
compound of iron-based superconductors, in-plane spin-spin
correlations are weakly dependent on the AFM ordering tem-
perature of the system [47]. To test if this is also the case for
zigzag ordered BaNi2(AsO4)2, we show in Figs. 5(b)–5(d) the
temperature dependence of the spin wave dispersion along the
[H, 0, 0] direction. In the elastic channel, magnetic ordered
peaks at the M points disappear above TN [Fig. 1(e)]. How-
ever, with finite energy transfer [Figs. 5(b)–5(d)], the in-plane
spin-spin correlations persist up to even 80 K, consistent with
the 2D nature of the magnetic scattering [49].

To compare magnetic exchange couplings of the zigzag
ordered BaNi2(AsO4)2 with related compounds BaNi2(PO4)2

and BaNi2(VO4)2, we note that the latter compounds have
different magnetic structures. The local moments on each
Ni site in BaNi2(PO4)2 and BaNi2(VO4)2 are antiparal-

FIG. 5. (a) Measured (orange) and calculated (blue) energy-
dependent local dynamic susceptibilities of BaNi2(AsO4)2, obtained
by integration in the first Brillouin zone in the [H, K] plane. The light
orange region indicates the uncertainty of the experiment data mainly
from the normalization process. Calculated local dynamic suscepti-
bility averaged every meV is also plotted to directly compare with
measured data. (b)–(d) Temperature dependence of neutron scatter-
ing E -Q spectra along the [H, 0, 0] direction observed at 17, 37, and
80 K. The experimental data were integrated over −4 � L � 4 and
−0.1 � K⊥ � 0.1.

lel to each other, and the direction of the moments in
BaNi2(PO4)2 is along the bond. Table I summarizes the
nearest, second-nearest, third-nearest magnetic exchange cou-
plings, easy-plane and easy-axis anisotropy, and Kitaev and �

terms in BaNi2(XO4)2 (X = V, P, As) and α-RuCl3.
As we can see from the table, the magnetic structure and

properties are very sensitive to exchange couplings in an AFM
honeycomb-lattice magnet. In previous neutron scattering
work on single crystals of BaM2(XO4)2 (M = Ni, Co; X =
V, P, As), spin wave spectra were only measured along se-
lected high-symmetry directions with poor resolution using a
triple-axis neutron spectrometer [37–41], much different from
the entire spin wave spectra obtained using a high-resolution
neutron time-of-flight chopper spectrometer (Figs. 2–4) [50].

TABLE I. The estimated magnetic interactions and anisotropies
in BaNi2(XO4)2 (X = V, P, As) [36,38] and α-RuCl3 [52,53] from
representative studies. All units are converted to meV.

BaNi2As2O8 BaNi2V2O8 BaNi2P2O8 α-RuCl3 α-RuCl3

J1 −0.69 12.3 0.19 −1.53 −0.35
J2 −0.03 1.25 0.025
J3 1.51 0.2 0.76 0.34
Dz 0.15 0.07 0.269
Dx −0.12 −0.001
K −6.55 5.25
� −2.8 2.4

214432-5



BIN GAO et al. PHYSICAL REVIEW B 104, 214432 (2021)

The J1, J2, and J3 parameters determined in our experiment
for BaNi2(AsO4)2 are consistent with the proposed phase
diagram for an S = 1 zigzag ordered antiferromagnet in a
classical Heisenberg Hamiltonian [21,51].

The evolution of magnetic Dirac bosons in the honey-
comb lattice has been calculated before in two papers. Several
AFM structures have been discussed, including simple AFM,
zigzag, dimerized, armchair, and stripe. In the simple AFM
structure, the breaking of inversion symmetry eliminates the
presence of a Dirac point, while in more complex AFM con-
figurations, the crossing of spin waves can produce Dirac-like
nodes. However, there is no experimental confirmation from
any real materials of a complex AFM structure. In the case of
CoTiO3, it is actually a FM correlation in the 2D honeycomb
lattice. Also notice that the Dirac points in BaNi2(AsO4)2

are not on the boundary of the Brillouin zone, not as in
the case of a 2D FM honeycomb lattice CoTiO3 nor the 3D
antiferromagnet Cu3TeO6 [18,19]. This is due to the more
generalized magnetic structure in BaNi2(AsO4)2, which has
lower symmetry.

IV. CONCLUSIONS

In summary, we used time-of-flight inelastic neutron scat-
tering to study spin waves of the S = 1 honeycomb-lattice
antiferromagnet BaNi2(AsO4)2, which has a zigzag AFM
ground state. We determine the magnetic exchange inter-
actions in the zigzag AFM ordered phase, and show that
spin waves in BaNi2(AsO4)2 have symmetry-protected Dirac
points inside the Brillouin zone boundary. These results pro-
vide a microscopic understanding of the zigzag AFM order
and associated Dirac magnons in honeycomb-lattice magnets,
and are also important for establishing the magnetic interac-
tions in Kitaev quantum spin liquid candidates.
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APPENDIX

Here, we present a detailed symmetry analysis of the
magnon band structure. In the main text, we have argued that
the bands on the �-X are doubly degenerate with {+1,−1}
My eigenvalues for Dz = 0. A finite Dz splits the degeneracy.
Here, we show that the doubly degenerate bands at the X point
have My eigenvalues {+1,+1} or {−1,−1} for finite Dz.

The relevant symmetries at the X point are My, C2y :=
t (a2)C2y (the combination of twofold rotation symmetry and
a translation along a2), and Mx. Here, a1 = (1, 0) and a2 =
(1/2,

√
3/2) are the lattice vectors of the nonmagnetic unit

cell [see Fig. 1(b) in the main text]. We now work out the
commutation relation between the symmetry operators,

MxMy = MyMx,

MyC2y = Myt (a2)C2y

= t (−a2 + a1)MyC2y

= t (−2a2 + a1)C2yMy

= C2yMy,

MxC2y = Mxt (a2)C2y

= t (−a1 + a2)MxC2y

= t (−a1)C2yMx

= −C2yMx,

where we have used the fact that t (−2a2 + a1) = 1 and
t (−a1) = −1 at the X point. We now use proof by contradic-
tion and assume one doubly degenerate band at the X point
contains states {ϕ+1, ϕ−1} with My eigenvalues {+1,−1}.
Since Mx commutes with My, Mxϕ+1 should also be an
My eigenstate with +1 eigenvalue. Therefore, Mxϕ+1 ∝ ϕ+1,
which means ϕ+1 is also an eigenstate of Mx with eigenvalue
λ. Furthermore, since Mx anticommutes with C2y, C2yϕ+1

should be an eigenstate of Mx with eigenvalue −λ. As a result,
C2yϕ+1 ∝ ϕ−1. Finally, My commutes with C2y, indicating
C2yϕ+1 ∝ ϕ−1 is an eigenstate of My with eigenvalue +1. This
contradicts the original assumption that ϕ−1 is an eigenstate of
My with eigenvalue −1. Therefore, every doubly degenerate
band at X has My eigenvalues {+1,+1} or {−1,−1}.
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